Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Transl Med ; 14(674): eabq6682, 2022 12 07.
Article in English | MEDLINE | ID: covidwho-2152884

ABSTRACT

The lung naturally resists Aspergillus fumigatus (Af) in healthy individuals, but multiple conditions can disrupt this resistance, leading to lethal invasive infections. Core processes of natural resistance and its breakdown are undefined. We investigated three distinct conditions predisposing to lethal aspergillosis-severe SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection, influenza A viral pneumonia, and systemic corticosteroid use-in human patients and murine models. We found a conserved and essential coupling of innate B1a lymphocytes, Af-binding natural immunoglobulin G antibodies, and lung neutrophils. Failure of this axis concealed Af from neutrophils, allowing rapid fungal invasion and disease. Reconstituting the axis with immunoglobulin therapy reestablished resistance, thus representing a realistic pathway to repurpose currently available therapies. Together, we report a vital host resistance pathway that is responsible for protecting against life-threatening aspergillosis in the context of distinct susceptibilities.


Subject(s)
COVID-19 , Neutrophils , Humans , Animals , Mice , SARS-CoV-2 , Steroids/therapeutic use
2.
Thromb Haemost ; 122(2): 308-309, 2022 02.
Article in English | MEDLINE | ID: covidwho-1590907
3.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: covidwho-1575230

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life-threatening syndrome, constituted by respiratory failure and diffuse alveolar damage that results from dysregulated local and systemic immune activation, causing pulmonary vascular, parenchymal, and alveolar damage. SARS-CoV-2 infection has become the dominant cause of ARDS worldwide, and emerging evidence implicates neutrophils and their cytotoxic arsenal of effector functions as central drivers of immune-mediated lung injury in COVID-19 ARDS. However, key outstanding questions are whether COVID-19 drives a unique program of neutrophil activation or effector functions that contribute to the severe pathogenesis of this pandemic illness and whether this unique neutrophil response can be targeted to attenuate disease. Using a combination of high-dimensional single-cell analysis and ex vivo functional assays of neutrophils from patients with COVID-19 ARDS, compared with those with non-COVID ARDS (caused by bacterial pneumonia), we identified a functionally distinct landscape of neutrophil activation in COVID-19 ARDS that was intrinsically programmed during SARS-CoV-2 infection. Furthermore, neutrophils in COVID-19 ARDS were functionally primed to produce high amounts of neutrophil extracellular traps. Surprisingly, this unique pathological program of neutrophil priming escaped conventional therapy with dexamethasone, thereby revealing a promising target for adjunctive immunotherapy in severe COVID-19.


Subject(s)
COVID-19/immunology , Extracellular Traps/immunology , Neutrophil Activation , Neutrophils/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , COVID-19/pathology , Female , Humans , Male , Middle Aged , Neutrophils/pathology , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/pathology , Respiratory Distress Syndrome/pathology , Severity of Illness Index
4.
Nat Med ; 28(1): 201-211, 2022 01.
Article in English | MEDLINE | ID: covidwho-1517637

ABSTRACT

Although critical for host defense, innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during Coronavirus Disease 2019 (COVID-19) ARDS, compared to ARDS from other respiratory pathogens, is unclear. Moreover, mechanisms underlying the beneficial effects of dexamethasone during severe COVID-19 remain elusive. Using single-cell RNA sequencing and plasma proteomics, we discovered that, compared to bacterial ARDS, COVID-19 was associated with expansion of distinct neutrophil states characterized by interferon (IFN) and prostaglandin signaling. Dexamethasone during severe COVID-19 affected circulating neutrophils, altered IFNactive neutrophils, downregulated interferon-stimulated genes and activated IL-1R2+ neutrophils. Dexamethasone also expanded immunosuppressive immature neutrophils and remodeled cellular interactions by changing neutrophils from information receivers into information providers. Male patients had higher proportions of IFNactive neutrophils and preferential steroid-induced immature neutrophil expansion, potentially affecting outcomes. Our single-cell atlas (see 'Data availability' section) defines COVID-19-enriched neutrophil states and molecular mechanisms of dexamethasone action to develop targeted immunotherapies for severe COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Dexamethasone/therapeutic use , Glucocorticoids/therapeutic use , Neutrophils/immunology , Pneumonia, Bacterial/immunology , Respiratory Distress Syndrome/immunology , Adult , Aged , COVID-19/complications , COVID-19/genetics , Cell Communication , Chromatography, Liquid , Down-Regulation , Female , Gene Regulatory Networks , Humans , Immunity, Innate/immunology , Interferons/immunology , Male , Middle Aged , Neutrophils/metabolism , Pneumonia, Bacterial/complications , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/genetics , Prostaglandins/immunology , Proteomics , RNA-Seq , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/genetics , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Single-Cell Analysis , Tandem Mass Spectrometry , COVID-19 Drug Treatment
5.
Am J Transplant ; 21(7): 2590-2595, 2021 07.
Article in English | MEDLINE | ID: covidwho-1099683

ABSTRACT

Solid organ transplant recipients are vulnerable to severe infection during induction therapy. We report a case of a 67-year-old male who died unexpectedly 10 days after receiving a kidney transplant on February 10, 2020. There was no clear cause of death, but COVID-19 was considered retrospectively, as the death occurred shortly after the first confirmed case of COVID-19 in Canada. We confirmed the presence of SARS-CoV-2 components in the renal allograft and native lung tissue using immunohistochemistry for SARS-CoV-2 spike protein and RNA scope in situ hybridization for SARS-CoV-2 RNA. Results were reaffirmed with the Food and Drug Administration Emergency Use Authorization approved Bio-Rad SARS-CoV-2 digital droplet PCR for the kidney specimen. Our case highlights the importance of patient autopsies in an unfolding global pandemic and demonstrates the utility of molecular assays to diagnose SARS-CoV-2 post-mortem. SARS-CoV-2 infection during induction therapy may portend a fatal clinical outcome. We also suggest COVID-19 may be transmittable via renal transplant.


Subject(s)
COVID-19 , Kidney Transplantation , Aged , Autopsy , Canada , Humans , Kidney Transplantation/adverse effects , Male , RNA, Viral/genetics , Retrospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Transplant Recipients
SELECTION OF CITATIONS
SEARCH DETAIL